Θέματα φιλοσοφικά, επιστημονικά, κοινωνικά, ψυχολογικά, για τον άνθρωπο. Νευροεπιστήμες, εγκέφαλος,συνείδηση και νοημοσύνη. Νίκος Λυγερός.
Όλες οι ανθρώπινες έννοιες είναι προβολές του ανθρώπινου πνεύματος γι'αυτό σε τελική ανάλυση πολλές φορές είναι απατηλές. Δεν βλέπουμε την πραγματικότητα , την αντιλαμβανόμαστε (όπως νομίζουμε εμείς πως είναι). Ο,τι βλέπουμε είναι μια ερμηνεία της πραγματικότητας, που βασίζεται σε υποκειμενικά, ελαττωματικά ή προκατειλημμένα παραδείγματα. Αυτό έχει επιπτώσεις όχι μόνο στο πώς καταλαβαίνουμε τον κόσμο, αλλά και πώς καταλαβαίνουμε τους ανθρώπους... Όταν κάποτε ρώτησαν τον Ηράκλειτο πώς γνωρίζει όσα γνωρίζει απάντησε: «ερεύνησα τον εαυτό μου». Όμως δεν αρκεί μόνο η αυτογνωσία, χρειάζεται και η εμπάθεια... O Σωκράτης, μέσω της μεθόδου διαλόγου που είχε αναπτύξει, εκμαίευε (εξ ου και Μαιευτική Μέθοδος) από τον συνομιλητή του την αλήθεια/γνώση που είχε μέσα του αλλά δεν γνώριζε. Ο άνθρωπος δε μπορει να αναζητά αυτό που δε γνωρίζει γιατί τότε δεν ξέρει τί να αναζητήσει αλλά ούτε αυτό που γνωρίζει μπορεί να αναζητά γιατί το ξέρει ήδη. Ο άνθρωπος τίποτε νέο δε μαθαίνει, παρά μόνο παίρνει συνείδηση των όσων ήδη γνωρίζει. Η γνώση (μάθηση) είναι ανάμνηση (ενθύμιση) , υπάρχει λοιπόν η ανάμνηση μέσα μας...

Μαθηματική Λογοτεχνία: Μαγικός συνδυασμός ή Ουτοπία;

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ
Ακούγοντας κάποιος τη φράση μαθηματική λογοτεχνία σίγουρα σαστίζει. Ο συσχετισμός μαθηματικών και λογοτεχνίας μοιάζει να είναι ένα εγχείρημα αντιφατικό. Αν όμως σκεφτεί λίγο καλύτερα αρχίζει, ίσως, να φαντάζεται πολύπλοκες εξισώσεις ενταγμένες σε ένα μυθιστορηματικό πλαίσιο. Όμως ούτε αυτό είναι μαθηματική λογοτεχνία. Πως όμως στην πράξη καταφέρνουν μαθηματικά και λογοτεχνία να συσχετιστούν; Οι ορισμοί των δύο εννοιών μας δίνουν μια πρώτη εικόνα των μεγάλων διαφορών που τις χωρίζουν.

Μαθηματικά: Το σύνολο των κανόνων με τους οποίους, μέσω συμπερασματικών λογισμών, μελετούμε τις ιδιότητες των αφηρημένων εννοιών και τις σχέσεις που υπάρχουν μεταξύ τους. Σύμφωνα με τον Ντεκάρτ «όλες οι επιστήμες που έχουν σκοπό την αναζήτηση της τάξης και του μεγέθους, υπάγονται στα μαθηματικά».Άγνωστο είναι το πότε έγινε χρήση των αριθμών για την καταμέτρηση αντικειμένων κι αν η χρήση αυτή προηγήθηκε από τη χρήση άλλων στοιχείων που είχε επινοήσει ο άνθρωπος για την απαρίθμηση.

Λογοτεχνία: Η τέχνη του λόγου, η ικανότητα να χειρίζεται κανείς τις αγωνίες και τα προβλήματα μιας εποχής, γι’ αυτό και είναι ο καθρέφτης της κάθε εποχής. Η λογοτεχνία ανήκει στις καλές τέχνες και αντλεί το περιεχόμενό της από τη ζωή, δεν είναι όμως ένα αντίγραφο ή μια απεικόνισή της. Ο λογοτέχνης παίρνει τα θέματά του από τον πλούσιο κόσμο της πραγματικότητας και της εμπειρίας και διαλέγει τους δικούς του εκφραστικούς δρόμους, δημιουργώντας μιαν αδιάσπαστη ενότητα περιεχομένου και μορφής, όπου το περιεχόμενο καθορίζει τη μορφή και η μορφή το περιεχόμενο.

Δύσκολα μπορεί κανείς να φανταστεί, πόσο μάλλον και να κατανοήσει, το πως μπορούν , η υποκειμενική κρίση στα δεδομένα, τα διπλά νοήματα και η ασάφεια που χαρακτηρίζουν τη λογοτεχνία, να συμβιβαστούν με την αυστηρότητα, τη σαφήνεια και την αντικειμενικότητα των μαθηματικών.

Αρχικά, θα αναφερθούμε στις ιστορικές στιγμές όπου μαθηματικά και λογοτεχνία συναντήθηκαν από την αρχαιότητα μέχρι τις μέρες μας, αλλά κυρίως θα επιχειρήσουμε ένα ταξίδι στη σύγχρονη μαθηματική λογοτεχνία. Ένα νέο είδος λογοτεχνικής παραγωγής που αξιολογείται, αυξάνεται και συμβαδίζει με την προσέγγιση στη λογική και στην καλή ποιότητα.

Από την αρχαιότητα μέχρι σήμερα, τα λογοτεχνικά κείμενα όταν αναφέρονται στα μαθηματικά επιδεικνύουν ιδιαίτερο σεβασμό. Ήδη από το 500 π.Χ. , στις αρχαίες τραγωδίες γίνεται αναφορά στους αριθμούς (π.χ. Αισχύλου Προμηθέας Δεσμώτης).

Όμως, όσο σεβασμό δείχνει η λογοτεχνία για τα μαθηματικά, τόσο σκωπτική διάθεση και ειρωνεία επιδεικνύει για τους μαθηματικούς. Τα κλισέ του «αφηρημένου μαθηματικού», του περιθωριακού τύπου που ζει «στον κόσμο του», είναι στοιχείο που υπάρχει ήδη από τα κλασικά χρόνια (415 π.Χ. , Όρνιθες Αριστοφάνη). Ο Αριστοφάνης ως κωμικός ποιητής, σατιρίζει διάφορους αθηναϊκούς χαρακτήρες κι ανάμεσά τους και μαθηματικούς.

Όμως , ο Αριστοφάνης σατιρικός ποιητής είναι και δουλειά του να διακωμωδεί τους πάντες. Ωστόσο, ανέκδοτα για τους μαθηματικούς αναφέρει ακόμα και ο Πλάτωνας που είναι γνωστό ότι τους σεβόταν. Eτσι, στο διάλογο Θεαίτητος διαβάζουμε: 

ΣΩΚΡΑΤΗΣ: Όπως ακριβώς και ο Θαλής, Θεόδωρε, που ενώ παρατηρούσε τα άστρα κοιτάζοντας προς τα πάνω, έπεσε σ ’ ένα πηγάδι. Τότε, λένε, πως κάποια χαριτωμένη και σπιρτόζα υπηρέτρια απ ’ τη Θράκη τον κορόιδεψε, παρατηρώντας πως από το μεγάλο ζήλο του να μάθει για όσα είναι στον ουρανό, δε βλέπει αυτά που είναι μπροστά του κι ανάμεσα στα πόδια του. Το ίδιο πείραγμα ισχύει για όλους όσους ζουν φιλοσοφώντας. Πράγματι, ένας τέτοιος άνθρωπος, δεν προσέχει διόλου τον πλησίον του και το γείτονα, όχι μονάχα το τι αυτός πράττει, αλλά σχεδόν και αν είναι άνθρωπος ή τίποτε άλλο ζωντανό. Τον ενδιαφέρει μόνο το τι τάχα είναι ο άνθρωπος και τι είναι αυτό στην ανθρώπινη φύση που τη διαφοροποιεί από αυτή των άλλων όντων.

Όπως όλοι οι μαθητές στον κόσμο, έτσι κι εμείς έχουμε συναντηθεί με το Θαλή αρκετές φορές. Κάθε φορά όμως, ο καθηγητής μιλούσε για το θεώρημα, ποτέ για τον άνθρωπο, το πρόσωπο. Άλλωστε στο μάθημα τον μαθηματικών δεν συζητούσαμε ποτέ για τους ανθρώπους. Πού και πού κάποιο όνομα έβγαινε στην επιφάνεια: Θαλής, Πυθαγόρας, Ντεκάρτ. Ήταν όμως σκέτο όνομα. Σαν όνομα τυριού ή σταθμού του μετρό. Δεν μιλούσαμε ποτέ για το πότε ή το που συνέβει κάτι. Οι μαθηματικοί τύποι και οι αποδείξεις, απλώς προσγειωνόντουσαν στον πίνακα. Σα να μην τους είχε ποτέ κανείς δημιουργήσει, σα να ήταν εκεί πάντα, όπως τα βουνά και τα ποτάμια. Εδώ και τα βουνά είχαν κάποια ιστορία, κάποια αρχή. Θα’ λεγε κανείς ότι τα θεωρήματα ήταν διαχρονικότερα από τα βουνά και τα ποτάμια, όπως απολογείται κι ένας σπουδαίος μαθηματικός, ο G.H.Hardy: «Τον Αρχιμήδη θα τον θυμούνται όλοι, όταν ο Αισχύλος θα ξεχαστεί. Γιατί οι γλώσσες πεθαίνουν ενώ οι μαθηματικές αλήθειες είναι παντοτινές. Η λέξη «αθανασία», ίσως να είναι μια λέξη ανόητη, αλλά αν σημαίνει κάτι, αυτό το διεκδικεί πολύ περισσότερο απ ’ τον καθένα ο μαθηματικός.»

Τα μαθηματικά όμως, δεν είναι ούτε Ιστορία ούτε Γεωγραφία, ούτε Γεωλογία. Αλήθεια τι είναι; Η ερώτηση δεν μοιάζει να ενδιαφέρει πολύ κόσμο. Την εποχή του Θαλή, τον 6ο π.Χ. αιώνα, η φιλοσοφία και τα μαθηματικά ήταν αδιαχώριστα. Άλλωστε οι ίδιες οι λέξεις δεν υπήρχαν ακόμα. Δημιουργήθηκαν πολύ αργότερα και ακόμα πιο μετά, χωρίστηκαν οι έννοιες. Σήμερα όμως, όλος ο κόσμος λησμονεί ότι στη γέννησή τους ήταν ενωμένες.

Αξίζει να αναφερθούμε επίσης σε ένα λογοτεχνικό κείμενο του 5ου μ.Χ. αιώνα που αναφέρεται στο σύνολο των επιστημών της εποχής εκείνης. «Ο Γάμος του Ερμή και της Φιλολογίας». Ο θεός Ερμής νυμφεύεται την Φιλολογία. Οι επτά ελεύθερες τέχνες παρελαύνουν για να ευχηθούν και αυτοπαρουσιάζονται. Ανάμεσά τους και η Αριθμητική, που η παρουσίασή της καταλαμβάνει 58 από τις 379 σελίδες του έργου, καθώς και η Γ εωμετρία η οποία καταλαμβάνει 60 σελίδες.

Αργότερα, η παρουσία των μαθηματικών σε ένα μυθιστόρημα αρκείται στην ιδέα ότι «αφού είναι μαθηματικό είναι εγγυημένα αληθές, αλλά έτσι κι αλλιώς δεν το καταλαβαίνει κανένας» . Γίνεται δηλαδή επίκληση κάποιου συγκεχυμένου μαθηματικού όρου ή τύπου, που εξασφαλίζει τη νομιμοποίηση της φυσικής παρανομίας.

Θα χρειαστεί να περιμένουμε μέχρι τον 19ο αιώνα για να έχουμε ένα λογοτεχνικό έργο, αφιερωμένο εξ’ ολοκλήρου στα μαθηματικά. Η «επιπεδοχώρα» του Abbot περιγράφει ένα δισδιάστατο κόσμο, του οποίου τα κατώτερα κοινωνικά όντα είναι οι γυναίκες που είναι ευθύγραμμα τμήματα, είναι όμως πολύ επικίνδυνες γιατί με τα άκρα τους μπορούν εύκολα να σκοτώσουν οποιοδήποτε άλλο κάτοικο της Επιπεδοχώρας. Οι κατώτεροι κοινωνικά άνδρες είναι τρίγωνα. Όσο περισσότερο ανεβαίνει κανείς τόσο περισσότερες πλευρές αποκτά.  Η αφρόκρεμα της κοινωνίας, το εκκλησιαστικό ιερατείο, είναι οι κύκλοι. Ένας από τους κατοίκους της επιπεδοχώρας ο Α. Square ονειρεύεται ότι βρίσκεται στη γραμμοχώρα, ένα μονοδιάστατο χώρο, όπου προσπαθεί με τρομερές δυσκολίες να περιγράψει στους κατοίκους της, τις δύο διαστάσεις. Την άλλη μέρα, τον επισκέπτεται στην Επιπεδοχώρα μια σφαίρα από την Χωροχώρα που τον ξεναγεί στον κόσμο των τριών διαστάσεων. Το βιβλίο αυτό αποτελεί την καλύτερη εισαγωγή στον χώρο των v διαστάσεων και βοηθά στην ενορατική αντίληψη της επέκτασης σε χώρους με περισσότερες από τρεις διαστάσεις.

Με την κατηγοριοποίηση της Μαθηματικής Λογοτεχνίας στα τέλη του 20ου αιώνα βρισκόμαστε σήμερα σε μια κυριολεκτική άνθησή της. Το φαινόμενο αυτό καταδεικνύει αναμφισβήτητα το αυξημένο ενδιαφέρον του κοινού αν όχι για τα μαθηματικά, τουλάχιστον γύρω από αυτά. Μπορεί βέβαια το ενδιαφέρον αυτό, να μη σημαίνει τη μεταστροφή προς το αρχέγονο δέος για τα μαθηματικά, αναμφίβολα όμως αποτελεί μια πρόκληση.

Έτσι, στην πρώτη κατηγορία ανήκουν τα μυθιστορήματα που έχουν ως βασικό τους θέμα τα μαθηματικά, δηλαδή η μυθοπλασία χρησιμοποιείται με σκοπό την ανάπτυξη, ή ακόμη και διδασκαλία μαθηματικών εννοιών. Στη κατηγορία αυτήν εντάσσεται, το μυθιστόρημα «Flatterland» του Ian Stewart, το οποίο αποτελεί μια συνέχεια του κλασσικού μυθιστορήματος «Flatland». Η περιπέτεια ξεκινά, όταν η ηρωίδα, Βικτόρια Line (γραμμή), ανακαλύπτει στη σοφίτα του σπιτιού της το σκοροφαγωμένο ημερολόγιο του προ-προπάππου της Albert Square (τετράγωνο). Η Βίκυ προσβάλλεται από τον ιό της Τρίτης Διάστασης, προς μεγάλη άγνοια των γονέων της, ακολουθώντας τα βήματα του προγόνου της στο εκτεταμένο σύμπαν της Τρίτης Διάστασης. Μία συναρπαστική ιστορία, γεμάτη δράση και «τάση φυγής» από το περιβάλλον, χαρίζει στον αναγνώστη μια εξωπραγματική διαδρομή, που ξεπερνά τα όρια του χρόνου και του χώρου.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ

Ένα ακόμη σπουδαίο βιβλίο του συγγραφέα Χρίστου Χ. Παπαδημητρίου, «Το Χαμόγελο του Τουρίνγκ», ανήκει στην ίδια κατηγορία. Ένα μυθιστόρημα τριγυρισμένο από μια «δροσερή» πνοή καλοκαιρινής περιπέτειας, που μυεί τον αναγνώστη στη δύναμη των μαθηματικών, της φιλοσοφίας, της πληροφορικής και της ζωής. Μια ακαταμάχητη δύναμη που μετασχηματίζει τη ζωή μας, σ’ όλες τις απόκρυφες πτυχές της: τον έρωτα, την πολιτική, ακόμη και το θάνατο, με τρόπους λεπτούς, πολύπλοκους, ριζικούς και τελικά λυτρωτικούς.

Ένα πλέγμα μυστηρίου και λογικής, εκτυλίσσεται στο μαθηματικό μυθιστόρημα του Denis Guedj : «Το θεώρημα του Παπαγάλου». Μια ανήσυχη, περιπετειώδης και συναρπαστική ιστορία, το Παρίσι, ταξιδιωτικές περιγραφές, μια παρέα που προσπαθεί να εξιχνιάσει το θάνατο ενός φίλου της και ένας φλύαρος παπαγάλος αποκαλύπτουν έναν μαγικό κόσμο των Μαθηματικών πολύ πιο «ανθρώπινο», απ’ όσα αφήνουν να φανεί, οι περίπλοκες εξισώσεις που συνήθως τον πλαισιώνουν.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Ένα πιο σύγχρονο μυθιστόρημα, είναι το “Once upon a number”, του John Allen Paulos, ο οποίος ισχυρίζεται ότι τα Μαθηματικά και η καθημερινή μας ζωή είναι αλληλένδετα και η μία περιοχή πληροφορεί την άλλη. Με άλλα λόγια, ο Paulos γράφει πως οτιδήποτε συμβαίνει στον κόσμο, μπορεί να περιγραφεί με μαθηματικό τρόπο. Χρησιμοποιώντας φανταστικούς διάλογους μεταξύ του Bernard Russel και του Grouho Marx, δείχνει πως η τακτική που χρησιμοποιούσε στις τρομοκρατικές πράξεις ο Unabomber, είναι προϊόν μαθηματικής ευφυΐας.

Ο Πιερ ντε Φερμά, μελέτησε το 17ο αι. το βιβλίο του Διοφάντου «Αριθμητικά» και στάθηκε στο Πυθαγόρειο Θεώρημα, σημειώνοντας στο περιθώριο της σελίδας τη φράση: «Έχω ανακαλύψει μια πραγματικά θαυμάσια απόδειξη, όμως το περιθώριο της σελίδας είναι πολύ στενό για να το αναπτύξω». Για τα επόμενα 350 χρόνια, η φράση αυτή του Φερμά, έγινε έμμονη ιδέα των διασημότερων μαθηματικών μυαλών, που από τότε ρίχνονται σ’ έναν φοβερό αγώνα για την επίλυση αυτού του μαθηματικού προβλήματος. Όλο αυτά εξετάζονται και αναλύονται στο βιβλίο του Simon Singh, «Το τελευταίο θεώρημα του Φερμά».

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Στην ίδια επίσης κατηγορία κατατάσσονται και τα εξής: «Την κυρία ή την τίγρη;», «Ο Σατανάς, ο Cantor και το άπειρο»(R.Smullyan), « To βιβλίο κόλαση»(Carlo Frabetti), « To σπασμένο ζάρι» (Ivar Ekeland) κ.ά.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ
Στην δεύτερη κατηγορία ανήκουν τα μυθιστορήματα που αναφέρονται σε μαθηματικούς. Κάποιοι από τους χαρακτήρες είναι Μαθηματικοί και η πλοκή καθορίζεται από αυτή την ιδιότητα. Το διασημότερο και πολυδιαβασμένο έργο του Απόστολου Δοξιάδη, «Ο θείος Πέτρος και η εικασία του Γκόλντμπαχ», υπάγεται σ’ αυτή την κατηγορία. Το βιβλίο αυτό, περιγράφει τη ζωή ενός ανθρώπου που έχει αφιερωθεί στα μαθηματικά. Ο αφηγητής - ανιψιός του ανακαλύπτει ότι ήταν κάποτε φημισμένος μαθηματικός, τόσο ιδιοφυής και παράτολμος ώστε να ασχοληθεί με την περίφημη «Εικασία του Γκόλντμπαχ». Ένα γοητευτικό μαθηματικό μυστήριο, που ξεναγεί και κάποιον μαθηματικά αστοιχείωτο στον πανέμορφο κόσμο των μαθηματικών και σε μερικά από τα πλέον αξιόλογα μαθηματικά θεωρήματα όπως την «Υπόθεση του Riemann» και το «Θεώρημα της μη πληρότητας» του Gendel. Έργο υψηλής αξίας και μεγάλων πραγματεύσεων, που συναρπάζει........

Χρησιμοποιώντας τη φόρμα πανεπιστημιακού μυθιστορήματος, ο Philibert Schogt, μέσα από το βιβλίο του με τίτλο: «Οι άγριοι αριθμοί», μας εισάγει στον τρόπο σκέψης και δουλειάς όσων ασχολούνται με τα καθαρά μαθηματικά. Η σκληρότητα και το πνεύμα ανταγωνισμού που κυριαρχούν στα πανεπιστήμια, η ιδιωτική πορεία και η απομόνωση, που ακολουθούν οι ερευνητές στο δύσκολο δρόμο της γνώσης και της αυτογνωσίας, αποδίδονται με χιούμορ και ανάλαφρη γραφή που αφήνει όμως να διαφανεί η έντονη κριτική του συγγραφέα, «για τη θέση του μαθηματικού στη σύγχρονη κοινωνία των γιάπηδων, μια κοινωνία που όχι μόνο περιφρονεί και περιθωριοποιεί όσους δεν ασχολούνται με κάτι χρήσιμο και αποδοτικό, αλλά και θεωρεί καθήκον της να τους αναμορφώσει.», όπως γράφει στον πρόλογο του βιβλίου ο υπεύθυνος της μετάφρασής του, Τεύκρος Μιχαηλίδης.

Μέσα από την τρίτη κατηγορία, στην οποία ανήκουν οι μυθιστορηματικές βιογραφίες, ξεχωρίζει για το ενδιαφέρον που προκαλεί και τη δραματικότητά του, το έργο: « Ο Γάλλος μαθηματικός», του Tom Petsinis. Ένα βιβλίο που εξιστορεί την ταραχώδη και σύντομη ζωή του Εβαρίστ Γκαλουά, χρησιμοποιώντας δυνατό και σαγηνευτικό μυθιστορηματικό λόγο, που γίνεται αμέσως ελκυστικός και αξιοπρόσεχτος, από το γεγονός ότι αφηγητής είναι ο ίδιος ο Γκαλουά. Οι μαθηματικές ιδιοφυΐες είναι άνθρωποι του πνεύματος, είναι αλλόκοτοι, και το κυριότερο, είναι πολύ σπάνιοι. Στον Γάλλο μαθηματικό, ένας συγγραφέας με σπουδαίο μυθοπλαστικό ταλέντο, καταφέρνει να συνδυάσει τον πολύπλοκο τρόπο σκέψης του μαθηματικού νου, με τα γεγονότα μιας συγκλονιστικής περιόδου. (Εποχή Ναπολέοντα-εσωτερικές διαμάχες Γαλλίας ).

Μία ακόμη μυθιστορηματική βιογραφία του ομώνυμου είδους, είναι και το έργο του G.H.Hardy, «Η απολογία ενός μαθηματικού».

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Τέλος, σε μια τέταρτη κατηγορία υπάγονται τα έργα που προβάλλουν Εκλαϊκευμένα τα μαθηματικά. Δηλαδή, έργα που αναφέρονται σε μαθηματικά απλουστευμένης, κατά κάποιο τρόπο, μορφής, με σκοπό την κατανόηση των εννοιών που παρουσιάζουν ακόμη κι από ένα άτομο μαθηματικά αστοιχείωτο. Στο βιβλίο του «Η γοητεία των μαθηματικών», ο Serge Lang περιλαμβάνει τρεις συζητήσεις που είχε με το κοινό κατά τις επισκέψεις του στο Palais de la Decouverte του Παρισίου. Στις σελίδες του βιβλίου ο Lang καταφέρνει με αξιοθαύμαστη δεξιοτεχνία να μεταδώσει σε ένα κοινό χωρίς ιδιαίτερες μαθηματικές γνώσεις, σημαντικά μαθηματικά ζητήματα όπως τους πρώτους αριθμούς, τις διοφαντικές εξισώσεις καθώς και τη γεωμετρία των ν -διαστάσεων.

Σε αυτό το είδος, επίσης, κατατάσσονται και τα έργα: «Ο Ταξιδευτής των μαθηματικών» και « Η μουσική των πρώτων αριθμών».

O κοινός δρόμος ανάμεσα στα μαθηματικά και τη λογοτεχνία, ξεκίνησε από το συνέδριο «Μαθηματικά και Αφήγηση» που πραγματοποιήθηκε στη .....Μύκονο και συνεχίζει να χαράζεται από πολλούς μαθηματικούς - συγγραφείς , ανάμεσά τους, ο Απόστολος Δοξιάδης, ο Τεύκρος Μιχαηλίδης, ο Barry Mazur, ο John Barrow, o Marcus du Sautoy, o Timothy Gowers και πολλοί άλλοι.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Εμείς επιχειρήσαμε μια πλοήγηση στις ιστορικές στιγμές όπου μαθηματικά και λογοτεχνία συναντήθηκαν και στις αναφορές της σύγχρονης μαθηματικής λογοτεχνίας. Πρέπει να ομολογήσουμε, πως κατά την πρώτη επαφή με το αντικείμενο αυτό, που συνδυάζει και ταυτόχρονα διατηρεί την μοναδικότητα δύο τόσο διαφορετικών, οπτικά, αλλά και τόσο συνταιριασμένων ειδών, Λογοτεχνίας και μαθηματικών, αισθανθήκαμε έκπληξη και διάθεση για ένα βήμα τολμηρό. Όπως όμως αποδείχθηκε κατά τη διάρκεια της ενασχόλησής μας με το θέμα αυτό, κατανοήσαμε πως τα δύο αυτά είδη, έχουν μεταξύ τους μια έμμεση αλλά και άμεση συγγένεια. Το γεγονός αυτό, τεκμηριώνεται από τα αρχαία ακόμη χρόνια, κατά τα οποία μόλις έκανε την εμφάνισή του, και από τη διαχρονικότητά της πορείας που ακολούθησε. Ο συνδυασμός της υποκειμενικότητας και της αντικειμενικότητας, της ασάφειας και της σαφήνειας, της ελευθερίας και του περιορισμού, πραγματοποιείται τελικά μ’ έναν απόλυτα αρμονικό τρόπο, που ελκύει και απογειώνει ενώ ταυτόχρονα συγκρατεί και επιβεβαιώνει σκέψεις ,που οδηγούν σε συμπεράσματα

Στον πρόλογό μας αναφέραμε τις έννοιες που ορίζουν τη Λογοτεχνία και τα Μαθηματικά. Όσο κι αν ερευνήσαμε κατά καιρούς, σε διάφορες πηγές ,έναν ορισμό που να χαρακτηρίζει την ένωση των δύο αυτών ειδών, στάθηκε αδύνατο να βρούμε μια ακριβή διατύπωση. Ίσως τελικά, ο όρος Μαθηματική Λογοτεχνία να σημαίνει τη δημιουργία έργων, που μέσα από το λογοτεχνικό είδος αναφέρονται, αφηγούνται ή αποβαίνουν στα μαθηματικά. Έργα που προβάλλουν τη συνεργασία και το συναγωνισμό των δύο εννοιών.




Tα μαθηματικά στη ζωγραφική και στην αρχιτεκτονική

Αν και τα μαθηματικά και η ζωγραφική είναι δύο έννοιες διαφορετικές μπορούν να συνδυαστούν και να δώσουν εντυπωσιακές και αξιοθαύμαστες δημιουργίες. Ιστορικά, μολονότι τα μαθηματικά θεωρούνται κυρίως λογική έχουν παίξει σημαντικό ρόλο στην εξέλιξη της τέχνης που απευθύνεται στο συναίσθημα.

Τα μαθηματικά και η ζωγραφική συναντώνται αρχικά στην τεχνική του κυβισμού. Ο όρος χρησιμοποιήθηκε πρώτη φορά ως κοροϊδευτικό σχόλιο για έναν πίνακα του Μπρακ με σπίτια που έμοιαζαν με κύβους. Οι κύριοι εκπρόσωποι του, ο Πικάσσο (1881 - 1973) και ο Μπρακ (1882 - 1963), αντλούν τα πρότυπά τους από την αυστηρά γεωμετρική αφρικανική τέχνη, αλλά και από την πορεία του Cezanne, στο έργο του οποίου μελετούν και εξετάζουν τη χρήση της δομής μορφής, για να φτάσουν σε μια νέα λογική απόδοση των πραγμάτων, η οποία βασίζεται στην απλοποίηση και τη γεωμετρική διάσπαση των αντικειμένων. Επειδή, αυτοί οι δύο καλλιτέχνες συνεργάστηκαν πολύ καιρό, μερικά από τα έργα τους δεν μπορούμε να ξεχωρίσουμε ποιος από τους δύο το ζωγράφισε.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Ο Κυβισμός γεννήθηκε ουσιαστικά με το έργο του Πικάσσο, «Δεσποινίδες της Αβινιόν», που ζωγράφισε ανάμεσα στο 1906 και στο 1907. Σ’ αυτό τον πίνακα ο συμβολισμός του 1906 συνυπάρχει με τη νέα πλαστική, που σηματοδοτεί την αρχή των κυβιστικών αναζητήσεων. Ο ζωγράφος προσπάθησε, μέχρι το τέλος του 1907, να βρει με ποιες τροποποιήσεις θα μπορούσε να δώσει στο έργο μεγαλύτερη ομοιογένεια, αλλά έκρινε ότι τα αποτελέσματα της προσπάθειάς του δεν ήταν ικανοποιητικά και ο πίνακας διατήρησε την αρχική του μορφή.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Τα θέματα του κυβισμού είναι κυρίως νεκρή φύση, μουσικά όργανα, μπουκάλια, ποτήρια, τραπεζάκια παρισινών καφέ, αφού δεν τους ενδιέφερε ούτε η απεικόνιση ούτε η αφήγηση αλλά η διανοητική απόδοση των πραγμάτων, η ανάλυση της φόρμας, του χρώματος και του φωτός. Τα έργα του χαρακτηρίζονται επίσης απ’ τη ρυθμική σύνθεσή τους πάνω σε γεωμετρικές χαράξεις και από το σκούρα χρωματισμό γκρι και ώχρας ο οποίος κυριαρχεί. Παρ’ όλο που μπορεί ο κυβισμός να φαίνεται αφηρημένη και γεωμετρική τέχνη, απεικονίζει υπαρκτά αντικείμενα. Οι κυβιστές ζωγράφοι αναζήτησαν καινούργιες σχέσεις ανάμεσα στη πραγματικότητα και στη ψευδαισθητική της αναπαράσταση και έτσι αρνούνται να ‘εξαπατήσουν’ το μάτι και να παρουσιάσουν τα πράγματα ‘’σαν πραγματικά’’. Αφού η ζωγραφική επιφάνεια είναι δισδιάστατη, κάθε ψευδαισθητική παράσταση βάθους είναι ψευδής. Ψευδής όμως ή ελλιπής είναι και η παρουσίαση ενός αντικειμένου μόνο από τη μία του όψη. Το αντικείμενο έχει ταυτόχρονα μπρος, πίσω, μέσα και έξω.

Ουσιαστικά αυτή η επίθεση κατά της οπτικής πραγματικότητας είναι η συνέπεια της διαπίστωσης ότι τα αντικείμενα κι ο φυσικός κόσμος δεν εξαντλούνται μόνο με το εξωτερικό τους, αφού τα αντικείμενα περισσότερο κρύβουν παρά αποκαλύπτουν την ουσία των πραγμάτων. Έτσι στον κυβισμό περιέχονται η κίνηση κι ο χρόνος, ενώ το αντικείμενο απεικονίζεται όχι όπως φαίνεται πραγματικά αλλά όπως υπάρχει στο πνεύμα του παρατηρητή, ή μάλλον δίνονται τόσα στοιχεία, όσα χρειάζονται για να αναγνωρισθεί με τις προσλαμβάνουσες παραστάσεις και τις γνώσεις που έχει για αυτό ο παρατηρητής.

Λίγα χρόνια αργότερα ανεξάρτητα από την τεχνική του κυβισμού δραστηριοποιείται ο διάσημος Ισπανός σουρεαλιστής ζωγράφος Salvator Dali (1904 -1982) ο οποίος χρησιμοποίησε στους πίνακές του σχέδια με έντονα γεωμετρικά και τοπολογικά στοιχεία. Σε πολλά έργα του ο Dali απεικόνισε τον τετραδιάστατο χώρο στο χώρο των δύο διαστάσεων.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Για παράδειγμα, στο έργο «Σε αναζήτηση της τέταρτης διάστασης» υπάρχουν στοιχεία τοπολογίας και τετραδιάστατης γεωμετρίας, έτσι που ο πίνακας φαίνεται να κινείται γύρω από μια υπερσφαίρα. Ο Νταλί εργάστηκε με όλα τα μέσα, αφήνοντας πίσω του ένα πλούσιο υλικό, αποτελούμενο από ελαιογραφίες, σχέδια, υδατογραφίες, γραφικά, κοσμήματα και αντικείμενα κάθε είδους. Ο ίδιος έλεγε για το έργο του: «Η δουλειά μου δεν είναι παρά μια αντανάκλαση, αυτών που καταφέρνω, αυτών που γράφω και σκέφτομαι. Όλη η ζωγραφική μου είναι ένα ψήγμα της συνολικής κοσμογονίας μου».

Όταν όμως αναφερόμαστε στον όρο «μαθηματική τέχνη» το μυαλό μας πηγαίνει κυρίως στον Ολλανδό καλλιτέχνη Maurits Cornelius Escher (1898 - 1972), που δημιούργησε μοναδικά και συναρπαστικά έργα τέχνης βασισμένα σε μαθηματικές ιδέες. Έτσι, ο Escher δίκαια ονομάστηκε πατέρας της μαθηματικής τέχνης. Χωρίζοντας το επίπεδο με κυματιστές σειρές πουλιών, ψαριών, ερπετών, θηλαστικών και ανθρώπων κατάφερε να δημιουργήσει μεγάλη ποικιλία καταπληκτικών εικόνων, οι οποίες βασίζονται σε νόμους της συμμετρίας, της θεωρία συνόλων, της προοπτικής, της τοπολογίας και της κρυσταλλογραφίας. Τα έργα του είναι λιθογραφίες, ξυλογλυφίες, ξυλογραφίες και χαλκογραφίες.

Όμως, ο Escher είναι περισσότερο γνωστός στους κρυσταλλογράφους για την πετυχημένη ψηφιδωτή τέχνη με την οποία χωρίζει το επίπεδο. Ακόμα κατά τη διάρκεια της δουλείας του δημιούργησε πολλά έργα με αντανακλάσεις, με κρυστάλλινα σχήματα και με σφαίρες. Οι περισσότεροι πίνακες του είναι ασπρόμαυροι χωρίς όμως αυτό να επηρεάζει την καλλιτεχνική και μαθηματική τους αξία. Στην προσπάθεια να κατανοήσουμε την ιδιαίτερη τέχνη του Escher αξίζει να αναφερθούμε πιο αναλυτικά στους σημαντικότερους πίνακες του.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Στη «Σχετικότητα» ασκούνται τρεις δυνάμεις της βαρύτητας και συνδέονται η μια με την άλλη. Τα τρία επίπεδα της γης διαπερνούν το κάθε επίπεδο από τη δεξιά γωνία. Είναι απίθανο στο φυσικό περιβάλλον διαφορετικών επιπέδων να περπατάς ή να κάθεσαι ή να στέκεσαι γιατί υπάρχει διαφορετικη αντίληψη στο τι είναι οριζόντια και στο τι είναι κάθετα. Παραδόξως οι άνθρωποι μοιράζονται το ίδιο χώρο και τις ίδιες σκάλες.

Σ’ έναν πίνακα με πολλές συμμετρίες στην «Μέρα και Νύχτα» το γκρίζο ορθογώνιο φόντο αναπτύσσεται προς τα πάνω σε σκιαγραφήματα (ή περιγράμματα) των άσπρων και μαύρων πουλιών· τα μαύρα πετάνε προς τα αριστερά και τα άσπρα προς τα δεξιά, με έναν αντίθετο σχηματισμό. Στα αριστερά της εικόνας τα άσπρα πουλιά πέρασαν από εκεί μαζί και μετέβαλλαν το ύφος της πλευράς σε έναν ουρανό μέρας που έχει πολύ φως. Τη δεξιά πλευρά, τα μαύρα πουλιά τη σβήνουν μαζί και τη μετατρέπουν σε νύχτα. Το ημερήσιο και το νυχτερινό τοπίο είναι καθρέφτες της εικόνας της κάθε πλευράς με τη βοήθεια του ανοιχτού και σκούρου γκρι. Παρατηρήστε, επίσης, ότι κοιτώντας τον πίνακα από πάνω προς τα κάτω, τα πουλιά μετατρέπονται σε χωράφια

Στον πίνακα «Ερπετά» φαίνεται η κυκλική ζωή ενός αλιγάτορα. Μεταξύ όλων των ειδών των αντικειμένων, ένα μπλοκ ζωγραφικής στο οποίο ξεχωρίζει η ζωγραφισμένη εικόνα μιας μορφής μωσαϊκού ερπετού. Ένα απ’ αυτά κουράζεται αυτό το επιπεδικό ψέμα ξεφεύγει παιχνιδιάρικα από τη φυλακή των δύο διαστάσεων και βγαίνει στις τρεις διαστάσεις, δηλαδή στη κανονική ζωή. Μετά αφού σκαρφάλωσε στα αντικείμενα που βρισκόταν γύρω του κουράστηκε και ξανά έπεσε στη ζωγραφισμένη εικόνα.

Σ' έναν άλλον ιδιαίτερο πίνακά του στο «Χέρι με σφαιρική αντανάκλαση» φαίνεται το χέρι του ζωγράφου που κρατάει μία μπάλα και αντανακλά πάνω του. Σ’ αυτό το καθρέφτη σχηματίζεται μια πιο ολοκληρωμένη θέα απ’ αυτά που τον περιβάλλουν απ’ ότι σε έναν ίσιο καθρέφτη. Υπάρχουν τέσσερις τοίχοι, ένα πάτωμα και ένα ταβάνι στο δωμάτιο. Το κεφάλι του και πιο συγκεκριμένα το σημείο που είναι ανάμεσα στα μάτια του, βρίσκεται ακριβώς στο κέντρο της σφαίρας. Όπως και να γυρίσει τον σφαιρικό καθρέπτη ο ίδιος παραμένει στο κέντρο. Το εγώ του είναι ο σταθερός πυρήνας του κόσμου του.

Η δουλειά του Escher πέρασε σχεδόν απαρατήρητη μέχρι τη δεκαετία του 1950, αλλά μέχρι το 1956 είχε κάνει τη πρώτη του σημαντική έκθεση, είχε γράψει γι’ αυτόν το περιοδικό Times, και είχε αποκτήσει παγκόσμια φήμη. Ανάμεσα στους μεγαλύτερους θαυμαστές του ήταν και μαθηματικοί, οι οποίοι αναγνώριζαν στη δουλειά του μια εκπληκτική απεικόνιση των μαθηματικών αρχών. Το πιο σημαντικό πράγμα ήταν ότι ο Escher δεν είχε επίσημη μαθηματική εκπαίδευση πέραν του γυμνασίου. Όσο η δουλειά του εξελισσόταν, αντλούσε μεγάλη έμπνευση από τις μαθηματικές ιδέες για τις οποίες διάβαζε, συχνά δουλεύοντας απ’ ευθείας από δομές της επιπεδομετρίας και προβολικής γεωμετρίας. Επίσης τον συνάρπαζαν τα παράδοξα και «αδύνατα» σχήματα, και αυτό τον βοήθησε να δημιουργήσει πολλά περίεργα έργα τέχνης. Έτσι, για ένα φοιτητή των μαθηματικών ο Escher περικλείει δύο τομείς: τη γεωμετρία του χώρου και αυτό που θα μπορούσαμε να αποκαλέσουμε «λογική του χώρου».

Γίνεται εύκολα αντιληπτό ότι ο Escher γοητευόταν από κάθε είδους ψηφιδώσεις - συμμετρικές και μη - και απολάμβανε ιδιαιτέρως αυτές που αποκαλούσε «μεταμορφώσεις» στις οποίες τα σχήματα άλλαζαν και αλληλεπιδρούσαν μεταξύ τους, και μερικές φορές απελευθερώνονταν βγαίνοντας από την επιφάνεια. Οι περισσότερες ψηφιδώσεις είναι ασύμμετρα πολύγωνα που διαιρούν τις επιφάνειες 

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Ο Escher εκμεταλλεύτηκε αυτά τα βασικά σχέδια στις ψηφιδώσεις του εφαρμόζοντας αυτό που οι γεωμέτρες θα αποκαλούσαν αντανακλάσεις, κυλιόμενες αντανακλάσεις, μεταφορές και περιστροφές. Αυτό το έκανε για να αποκτήσει μεγαλύτερη ποικιλία σχεδίων. Επίσης, έκανε αυτά τα σχήματα πιο περίπλοκά, «διαστρεβλώνοντας» τα και μεταμορφώνοντάς τα σε ζώα, πουλιά και άλλες μορφές. Αυτές οι διαστρεβλώσεις έπρεπε να υπακούουν στην τριπλή, τετραπλή ή εξαπλή συμμετρία (δηλαδή αυτές η συμμετρίες προέρχονται από τα τρίγωνα, τετράγωνα και εξάγωνα) του βασικού σχήματος έτσι ώστε να διατηρηθεί η ψηφίδωση. Το αποτέλεσμα μπορεί να είναι και εντυπωσιακό και όμορφο.

Ο ίδιος ο Escher υποστήριζε : «Αν μου δίνουν μεγαλύτερη χαρά οι δικές μου μικρές εικόνες απ’ ότι η ωραιότερη φωτογραφική μηχανή στον κόσμο τότε ίσως είμαι στο σωστό δρόμο.»

Εκτός από τη ζωγραφική μεγάλη είναι η συνεισφορά των μαθηματικών σε ποικίλες μορφές της ζωής και της τέχνης.

Αξίζει, για παράδειγμα να ασχοληθούμε με έναν από τους πιο διάσημους αριθμούς. Τον αριθμό Φ, ο οποίος είναι γνωστός ως «λόγος της χρυσής τομής». Ας υποθέσουμε ότι θέλουμε να χωρίσουμε ένα ευθύγραμμο τμήμα σε δύο άνισα μέρη, κατά τρόπο ώστε η αναλογία του συνολικού του μήκους προς το μήκος του μεγαλύτερου μέρους να ισούται με την αναλογία του μήκους του μεγαλύτερου μέρους προς το μήκος του μικρότερου, στο σχήμα μας δηλαδή, θέλουμε ο λόγος ΑΓ δια ΑΒ να ισούται με το λόγο ΑΒ δια ΒΓ. Η τομή στο Β, η "χρυσή τομή" δηλαδή, είναι εκείνη η οποία επιτυγχάνει το αποτέλεσμα αυτό, και στη μοναδική αυτή χρυσή τομή ο λόγος ΑΓ/ΑΒ και ΑΒ/ΒΓ ισούται πάντοτε (ανεξάρτητα φυσικά από το μήκη των εκάστοτε ευθύγραμμων τμημάτων) με 1,62 δηλαδή με το Φ.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Την αρμονικότητα που αποπνέει ο αριθμός Φ τη γνώριζαν και την αξιοποίησαν ποικιλοτρόπως οι αρχαίοι Έλληνες, φτάνοντας την στο έπακρο με τη σύλληψη της αρχιτεκτονικής του Παρθενώνα, οι αναλογίες του οποίου βασίζονται στο Φ.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Το Φ έχει, επίσης συσχετιστεί, περισσότερο ή λιγότερο άμεσα, με πλήθος φυσικών μεγεθών, φαινομένων ή ανθρώπινων εκδηλώσεων, όπως πχ με τις αναλογίες του ανθρώπινου σώματος, την πορεία του δείκτη τιμών των χρηματιστηρίων και άλλων χαοτικών φαινομένων, τις τροχιές των πλανητών γύρω από τον Ήλιο, το σχήμα των πιστωτικών καρτών, τη γεωμετρική δομή των κρυστάλλων, τις χρωματικές και σχεδιαστικές αναλογίες έργων μεγάλων ζωγράφων όπως ο Leonardo da Vinci, τους βιορυθμούς του ανθρώπινου σώματος και τον καρδιακό ρυθμό, τα σωματικά χαρακτηριστικά διαφόρων ζώων, τη σταθερά Feigenbaum της Χαολογίας, τα θεολογικά κείμενα διαφόρων θρησκειών και πολλά άλλα ακόμη.

Χαρακτηριστική είναι επίσης η σχέση μεταξύ μαθηματικών και αρχιτεκτονικής. Η πυραμίδα του Χέοπα, για παράδειγμα είναι μια τεράστια δομή που συμβολίζει το Ιερό Βουνό και τον παγκόσμιο αγώνα της ανθρωπότητας να φτάσει στον ουρανό. Είναι η "εικόνα του κόσμου" και περιέχει τις τέσσερις κατευθύνσεις του διαστήματος. Πέρα από την αρχιτεκτονική μοναδικότητα και μεγαλείο, η μεγάλη πυραμίδα θεωρείται από εσωτεριστικές πηγές ως ένα σύμβολο που περικλείει μυστηριώδεις αναλογίες και αριθμούς που κωδικοποιούν τα μυστήρια του Κόσμου.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Μεγάλο ενδιαφέρον παρουσιάζουν και οι οικοδομικές κατασκευές των Ινδιάνων. Τα περισσότερα οικοδομήματα έχουν βρεθεί στις ανατολικές ΗΠΑ. Και τα περισσότερα είναι κωνικά. Συνήθως πρόκειται για κόλουρες τετράπλευρες πυραμίδες. Η πιο μεγάλη -ύψους γύρω στα 30 μέτρα και με βάση γύρω στα 210 μέτρα - βρίσκεται στο Ιλινόις. Η Γεωμετρία των ιθαγενών Ινδιάνων της Β. Αμερικής είναι μια φυσική, αναλογική γεωμετρία που δημιουργείται από τον απλό κύκλο. Αρχιτεκτονικά και εικονογραφικά στοιχεία, αποδεικνύουν ότι ήταν μια κοινή παράδοση που μεταβιβάζονταν και έβρισκε εφαρμογή για τουλάχιστον 2.000 χρόνια. Πρόκειται για τον ίδιο τύπο γεωμετρίας που ανακαλύφθηκε και αναπτύχθηκε σε διάφορα σημεία της υφηλίου, απ' την Κίνα και τη λεκάνη της Μεσογείου μέχρι και τα Βρετανικά νησιά.

Πολύ αργότερα το χαρακτηριστικότερο "μαθηματικό" παράδειγμα στην αρχιτεκτονική της Αναγέννησης είναι ο Palladio, ο οποίος χρησιμοποίησε αρμονικές αναλογίες για την τρισδιάστατη χάραξη των δωματίων στις σπουδαιότερες βίλλες του. Ξεχώρισε επτά ιδανικές μορφές δωματίων: Το κυκλικό, το τετράγωνο, και άλλες πέντε μορφές, με αναλογίες πλευρών, διαγωνίων και συνδυασμούς τετραγώνων.

Στις μέρες μας η αρχιτεκτονική και τα μαθηματικά συμβαδίζουν. Χαρακτηριστικότερο παράδειγμα είναι τα κυβιστικά σπίτια που κοσμούν μεγάλες ευρωπαϊκές πόλεις όπως η Πράγα, το Ρότερνταμ και άλλες. Επίσης, τα μεγάλα σύγχρονα αρχιτεκτονικά οικοδομήματα σε όλο τον κόσμο βασίζονται σε βασικές μαθηματικές έννοιες όπως τα κανονικά πολύγωνα, η τριγωνομετρία και οι συμμετρίες.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Είναι περίεργο πως παρατηρώντας τις καλές τέχνες μέσα από τα μαθηματικά όχι μόνο δεν διακρίνεις ένα πολύπλοκο κόσμο με δυσνόητες εξισώσεις, αλλά αντίθετα ανακαλύπτεις ένα κόσμο φαντασίας, ένα κόσμο μαθηματικών και ένα κόσμο της αληθινής μας ζωής. Ο Picasso και ο Brucke, o Dali και ο Escher και πολλοί άλλοι δημιούργησαν τέχνη χρησιμοποιώντας μαθηματικά. Μήπως και τα ίδια τα Μαθηματικά είναι τέχνη;



Μαθηματικά - Μουσική

Τα μαθηματικά και η μουσική είναι δυο επιστήμες που έχουν πολύ μεγάλη σχέση μεταξύ τους. Από την αρχαιότητα ακόμη οι δύο τέχνες αλληλεπιδρούν μεταξύ τους και η αλληλεπίδραση αυτή φτάνει ως τις μέρες μας. Η ιδέα της σύνδεσης των μαθηματικών και της μουσικής γεννήθηκε πριν από 26 ολόκληρους αιώνες στην αρχαία Ελλάδα από τον Πυθαγόρα, μαθηματικό και ιδρυτή της πυθαγόρειας σχολής - σκέψης. Ο φιλόσοφος γνώριζε πολύ καλά τη σχέση της μουσικής με τους αριθμούς. Οι ειδικοί ερευνητές θεωρούν ότι το πιθανότερο είναι πως ο ίδιος και οι μαθητές του εντρύφησαν στη σχέση της μουσικής και των αριθμών μελετώντας το αρχαίο όργανο μονόχορδο.

Όπως φαίνεται από το όνομά του, το μονόχορδο ήταν ένα όργανο με μία χορδή και ένα κινητό καβαλάρη που διαιρούσε τη χορδή επιτρέποντας μόνο ένα τμήμα της να ταλαντώνεται, που από αρκετούς μελετητές τοποθετείται στην οικογένεια του λαούτου με βραχίονα, δηλαδή χέρι. Το μονόχορδο χρησιμοποιήθηκε για τον καθορισμό των μαθηματικών σχέσεων των μουσικών ήχων. Ονομάζονταν και "Πυθαγόρειος κανών" γιατί απέδιδαν την εφεύρεσή του στον Πυθαγόρα. Πολλοί μεγάλοι μαθηματικοί εργάσθηκαν για τον υπολογισμό των μουσικών διαστημάτων πάνω στον κανόνα, όπως ο Αρχύτας (εργάσθηκε στις αναλογίες των διαστημάτων του τετραχόρδου στα τρία γένη, διατονικό, χρωματικό και εναρμόνιο και ανακάλυψε το λόγο της μεγάλης τρίτης στο εναρμόνιο γένος), ο Ερατοσθένης ο Δίδυμος (σ' αυτόν αποδίδεται ο καθορισμός του "κόμματος του Διδύμου", που είναι η διαφορά μεταξύ του μείζονος τόνου (9/8) και του ελάσσονος (10/9) δηλαδή 81/80).

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ



Ήταν εντυπωσιακό το γεγονός ότι μόνο οι ακριβείς μαθηματικές σχέσεις έδιναν αρμονικούς ήχους στο μονόχορδο. Για παράδειγμα, έπρεπε να χωρίσουν ακριβώς στη μέση τη χορδή, και όχι περίπου στη μέση, ώστε να έχουν το ευχάριστο ψυχικό συναίσθημα που απορρέει από έναν αρμονικό ήχο. Εύκολα λοιπόν οι Πυθαγόρειοι κατέληξαν στο συμπέρασμα ότι τα μαθηματικά κυβερνούν τη μουσική ή και ότι, ως ένα βαθμό, η μουσική κυβερνά τα μαθηματικά. Για τους Πυθαγορείους, αυτή η άμεση και ακριβής σχέση μαθηματικών, μουσικής και ευχάριστου ψυχικού συναισθήματος αποτελούσε τη μέγιστη απόδειξη ότι η αλήθεια, στο ύψιστο επίπεδό της, εκφράζεται με μαθηματικές σχέσεις. Πίστευαν, μάλιστα, ότι η ψυχή, μέσα από τα μαθηματικά και τη μουσική, μπορούσε να εξυψωθεί ώσπου να ενωθεί με το σύμπαν και ότι ορισμένα μαθηματικά σύμβολα έχουν αποκρυφιστική σημασία. Η εμμονή των Πυθαγορείων στους ρητούς αριθμούς ήταν εκείνη που περιόρισε τους ορίζοντές τους και τους οδήγησε στο συμπέρασμα ότι ο κόσμος που μας περιβάλλει είναι δομημένος με βάση την τέλεια αρμονία των πάντων. Ωστόσο, στις αρχές της αρμονίας των Πυθαγορείων βασίστηκε η ευρωπαϊκή μουσική μέχρι, τουλάχιστον, τη στιγμή που ο Γιόχαν Σεμπάστιαν Μπαχ, μέσω της σύνθεσής του "Καλοσυγκερασμένο Κλειδοκύμβαλο" πρότεινε την υποδιαίρεση της οκτάβας σε δώδεκα ημιτόνια.


Η μουσική των σφαιρών

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ
Οι Πυθαγόρειοι πίστευαν ότι οι πλανήτες (σφαίρες), καθώς ταξιδεύουν στον ουρανό, παράγουν μουσική λόγω της τριβής τους με το γαλαξιακό αιθέρα. Πίστευαν, συγκεκριμένα, ότι η Γη αποτελεί το κέντρο του σύμπαντος και ότι κάθε πλανήτης παράγει τις δικές του νότες, ανάλογα με την απόστασή του από τη Γη. Παράλληλα, διαπίστωναν ότι η μελωδία του σύμπαντος είναι τόσο ξεχωριστή, ώστε τα απλοϊκά αφτιά μας δεν μπορούν να την ακούσουν. Ωστόσο, πρόκειται για μια μουσική με τόση ισχύ, ώστε να καθορίζει όλους τους κύκλους της ζωής, από τις τέσσερις εποχές μέχρι τα καιρικά φαινόμενα.


Το μονόχορδο του Πυθαγόρα

Όμως, πώς ακριβώς πειραματίστηκαν οι Πυθαγόρειοι στο μονόχορδο για την ανάδειξη των σχέσεων μαθηματικών και μουσικής; Αν μειώσουμε το μήκος μιας χορδής ακριβώς στο μισό, τότε ο ήχος που παράγεται είναι ακριβώς μία οκτάβα υψηλότερος (μία οκτάβα είναι ένα ντο, ρε, μι, φα, σολ, λα, σι, ντο) - μας δίνει, δηλαδή, ένα ντο πιο πάνω. Αν μειώσουμε το μήκος της χορδής κατά 1/3, τότε τα 2/3 της χορδής που απομένουν μας δίνουν τη διαφορά της πέμπτης (δηλαδή από το ντο στο λα). Κι αν μειώσουμε το μήκος κατά 1/4, τότε τα 3/4 που απομένουν μας δίνουν τη διαφορά της τετάρτης (από το ντο στο σολ). Ήταν ξεκάθαρο, λοιπόν, σ’ αυτό το επίπεδο της παρατήρησης ότι τα μαθηματικά "κυβερνούν" τη μουσική. Το γεγονός ότι από τους ήχους αυτών των διαφορών δημιουργείται ένα ευχάριστο συναίσθημα στον ακροατή, οδήγησε τους Πυθαγορείους στο συμπέρασμα ότι οι ακέραιοι και τα κλάσματα ελέγχουν όχι μόνο τον άψυχο αλλά και τον έμψυχο κόσμο μέσω της μουσικής.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Ο Αριστόξενος, νεότερος του Πυθαγόρα υπήρξε φιλόσοφος και σημαντικότατος θεωρητικός της μουσικής και του δόθηκε μάλιστα η ονομασία ο μουσικός. Η μέθοδος του ήταν κυρίως εμπειρική. Το σύστημα διδασκαλίας του βασίζεται σε αντίθεση με τον Πυθαγόρα, στην ικανότητα του αυτιού να αντιλαμβάνεται την αρμονική σχέση των μουσικών τόνων. Δεν ερευνά τις αριθμητικές σχέσεις μέσα στην οκτάβα, όμως καθορίζει τον ολόκληρο και τον μισό τόνο και κατασκευάζει μια κλίμακα με βάση το 1/12 του τόνου.


Ο Ευκλείδης από την άλλη, έχει μια γεωμετρική πρόταση για τα μουσικά διαστήματα.

Θεωρεί ότι αντιστοιχούν σε ευθείες γραμμές, με μία όμως διάφορα, ενώ οι ευθείες γραμμές που παράγονται ως αριθμοί ορίζονται με δύο γράμματα ένα στην αρχή και ένα στο τέλος τους, τα μουσικά διαστήματα δηλώνονται με ένα γράμμα.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Η Γεωμετρική πρόταση του Ευκλείδη για τα μουσικά διαστήματα

Στη σημερινή πραγματικότητα, τόσο η μουσική θεωρία, όσο και η μουσική πράξη, ερμηνεύονται με φυσικούς νόμους, που με τη σειρά τους διατυπώνονται με μαθηματικές σχέσεις. Στην ακουστική (στον ιδιαίτερο κλάδο της φυσικής που έχει ως αντικείμενο τον ήχο και τις ιδιότητές του) ένα μουσικό διάστημα εκφράζεται σαν ο λόγος δύο συχνοτήτων. Σε ορισμένες περιπτώσεις ο λόγος είναι απλής μορφής όπως για παράδειγμα οι γνωστοί μας λόγοι της καθαρής πέμπτης (3/2), της καθαρής τετάρτης (4/3), της οκτάβας (2/1) κ.λ.π. Σε άλλες περιπτώσεις, ελλείψει μεγίστου κοινού διαιρέτη, οι όροι του λόγου είναι μεγάλοι αριθμοί όπως στο διάσχισμα (2048/2025). Προκύπτει λοιπόν το συμπέρασμα ότι είναι δύσκολη, αν όχι αδύνατη, η σύγκριση δύο μουσικών διαστημάτων.

Η απλούστευση στην παράσταση των μουσικών διαστημάτων επήλθε με τη βοήθεια της λογαριθμικής σχέσης :

μέγεθος μουσικού διαστήματος = k * log(f2/f1)/log2

στην παραπάνω σχέση, όπου f1, f2 οι συχνότητες των φθόγγων του μουσικού διαστήματος και f2>f1. Το k είναι μια σταθερά η τιμή της οποίας καθορίζει και ένα σύστημα μονάδων μουσικών διαστημάτων.


Συγκερασμοί για τα μουσικά διαστήματα

Ανάλογα με τις τιμές της σταθεράς k (οι οποίες αφορούν διαίρεση της οκτάβας σε τόσα τμήματα όσο η αντίστοιχη τιμή), έχουμε κι ένα σύστημα μονάδων μουσικών διαστημάτων. Οι πιο γνωστές και χαρακτηριστικές τιμές της σταθεράς k, αναφέρονται στη συνέχεια.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ



Ρυθμός - Αριθμός

Ο ρυθμός και η Αρμονία είναι οι δύο βασικές συνιστώσες κάθε μουσικής έκφρασης. Ο ρυθμός είναι η πρώτη μουσική κατάκτηση για τον άνθρωπο, όπως ακριβώς ο αριθμός είναι η πρώτη, η θεμελιώδης Μαθηματική κατασκευή. Ο ρυθμός και ο αριθμός έχουν κοινή καταγωγή, την οποία έλκουν από την κατάτμηση του χρόνου και την 1-1 αντιστοιχία των χρονικών στιγμών με γεγονότα.

Η σύγχρονη αντίληψη για την αρμονία προκύπτει μέσα από τη χρήση ενός ισχυρότατου Μαθηματικού "εργαλείου", της ανάλυσης Fourier.

Ο Ανθρωπολόγος G. Murdock(1986) αναφέρει πως υπάρχουν 72 στοιχεία που είναι κοινά σε όλους τους πολιτισμούς, μεταξύ δε αυτών είναι τα σύμβολα της αρίθμησης και η μουσική.

Το αρχαιότερο εύρημα που έχει σχέση με τις μουσικές συνήθειες των ανθρώπων έχει ηλικία 35.000 χρόνων και είναι οστά από μαμούθ τα οποία, κατά τους αρχαιολόγους, χρησιμοποιήθηκαν για την παραγωγή ήχων προφανώς ρυθμικών. Ο ρυθμός, λοιπόν, είναι το πρώτο είδος μουσικής που χρησιμοποίησε ο άνθρωπος.

Στο χώρο των Μαθηματικών τώρα, η πρώτη Μαθηματική έννοια που είχε αρχίσει από νωρίς να κατασκευάζεται στο νου του ανθρώπου ήταν αυτή του αριθμού.

Σήμερα οι δύο αυτές έννοιες συνυπάρχουν στον τρόπο με τον οποίο γράφεται η Δυτική μουσική. Ας δούμε ένα παράδειγμα:

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ

Στο σχήμα φαίνεται ένα μέρος ενός μουσικού κομματιού. Η χρονική αξία του πρώτου και δεύτερου συμβόλου είναι 1/4 και 1/2 αντίστοιχα, ενώ κάθε ένα από τα σύμβολα (νότες) που είναι ενωμένα έχουν εξ ορισμού αξία 1/8. Το κλάσμα 4/4 στην αρχή καθορίζει πως κάθε μέτρο, κάθε διάστημα δηλαδή το οποίο περιέχει μία μουσική φράση, πρέπει να περιέχει σύμβολα (νότες) συνολικής αξίας 4/4. Πράγματι 1/4+1/2+1/8+1/8=4/4. Τώρα πλέον ο αριθμός καθορίζει το ρυθμό και επιτρέπει να εκτελείται ένα μουσικό κομμάτι συγχρονισμένα από τους μουσικούς.



Η πορεία προς τις σύγχρονες αντιλήψεις.

Τα όσα περιγράψαμε μέχρι τώρα θα μπορούσαν να αναπαρασταθούν στο παρακάτω σχήμα:

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ

Ο δρόμος για νέες τεχνολογικές εφαρμογές ανοίγει και επηρεάζει τον τρόπο κατασκευής μουσικών οργάνων και αυτό έχει σαν αποτέλεσμα τη στροφή των επιστημόνων προς τη μελέτη παλμικών κινήσεων. Η στροφή αυτή είναι καταλυτική για την έρευνα των Μουσικών φαινομένων η οποία προσανατολίζεται πλέον προς τη μελέτη του τρόπου παραγωγής των ήχων ενώ, όπως είδαμε, οι Πυθαγόρειοι ασχολήθηκαν με τις αριθμητικές σχέσεις των ήχων.

Βρισκόμαστε στα μέσα περίπου του 17ου αιώνα. Η μελέτη των παλμικών κινήσεων οδηγεί στην συγκρότηση της μαθηματικής έννοιας των περιοδικών φαινομένων και η Τριγωνομετρία στρέφεται πλέον από την παραδοσιακά υπολογιστική της στάση σε μια περισσότερο αναλυτική θεώρηση.


Στο σημείο αυτό θα κάνουμε δύο σημαντικές επισημάνσεις:

1. Ο Πυθαγόρας μελέτησε τον ήχο που παράγεται από μια χορδή χωρίς να συνυπολογίσει τις παραμέτρους της τάσης και της μάζας της χορδής αφού τα Μαθηματικά εργαλεία της εποχής του δεν επέτρεπαν κάτι τέτοιο.

2. Διάσημοι Μαθηματικοί όπως ο Euler, o D'Alembert και ο Langrange επιχείρησαν να λύσουν της εξίσωση της παλλόμενης χορδής. Ο Daniel Bernoulli βρήκε μια λύση μέσω μιας σειράς τριγωνομετρικών συναρτήσεων, αυτός όμως που ανέδειξε τη γενική λύση του προβλήματος της παλλόμενης χορδής ήταν ο Fourier το έτος 1822 με το έργο του "Theorie analytique de la chaleur".

Στο παρακάτω σχήμα φαίνεται η καμπύλη που παράγεται από τη νότα Ρε ενός φλάουτου καθώς και οι αρμονικές της συνιστώσες χρησιμοποιώντας Τριγωνομετρικές σχέσεις.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ


Η νότα Ρε όπως παράγεται από ένα φλάουτο.

Παρατηρούμε ότι οι αρμονικές είναι μόνο 3 γι' αυτό ο ήχος του φλάουτου είναι τόσο απλός.


Σύγχρονοι Συνθέτες

Η πρώτη μαθηματική αναφορά στη μουσική ανιχνεύεται ήδη το 1925 στη Λυρική σουίτα του A. Berg, όπου ο συνθέτης στηρίζει τη δομή του έργου του στον μαγικό αριθμό 23 που προσδιορίζει το μέγεθος των κινήσεων, τις ενδείξεις του μετρονόμου ακόμα και σε μερικά σημεία τον αριθμό των φθόγγων των συγχορδιών.

Μαθηματικά, λογοτεχνία, μαθηματικα και μουσική, τα μαθηματικα στην αρχιτεκτονική, Παρθενωνας και Χρυσός αριθμός φ

Μετά το τέλος του Β' Παγκοσμίου πολέμου, και κατά την αρχή του δεύτερου μισού του 20ου αιώνα, συνθέτες όπως ο Karlheinz Stockhausen, ο Ιάνης Ξενάκης, o Les Paul, o Edgar Varese και άλλοι άρχισαν να χρησιμοποιούν στις συνθέσεις τους ηλεκτρονική μουσική. Έτσι αναπτύσσονται νέες μέθοδοι για την ηλεκτρονική παραγωγή και επεξεργασία του ήχου.


Η ιδιαίτερη σημασία στο έργο του Ι. Ξενάκη έγκειται όχι απλώς στο ότι αποτέλεσε με ένα δικό του προσωπικό τρόπο μέρος της παγκόσμιας μουσικής πρωτοπορίας ήδη από το 1954, με τη σύνθεση του έργου «Μεταστάσεις», αλλά κυρίως στο ότι με ένα σύνολο καινούργιων αντιλήψεων τόσο ως προς την οργάνωση του ηχητικού φαινομένου, αλλά και με την επαναστατική ανακάλυψη των σχέσεων μαθηματικών και μουσικής, άνοιξε τρομερούς νέους ορίζοντες στη δεδομένη μέχρι τότε, σκηνή της μουσικής σύνθεσης.


Η μουσική είναι ένα ποιοτικό φαινόμενο όπως η αίσθηση του ωραίου, της ανάμνησης και της λήθης, του ευχάριστου και του δυσάρεστου. Η ιστορία του Δυτικού κόσμου συνδέεται άμεσα, τους τρεις τελευταίους αιώνες, με την προσπάθεια υπαγωγής όλων των ποιοτικών φαινομένων σε ποσότητες εφόσον έτσι γίνονται τα φαινόμενα αυτά ελέγξιμα, ερμηνεύσημα αντικειμενικά. Κάθε εσωτερική αίσθηση μπορεί πλέον να γίνει εικόνα, να βγει στο χώρο. Η αίσθηση του κόκκινου χρώματος οφείλεται σε κάποιο μήκος κύματος της ορατής ακτινοβολίας και οι νότες γίνονται καμπύλες κινούμενες σε έναν παλμογράφο. Ένας συνεχής μετασχηματισμός συντελείται ο οποίος μεταμορφώνει το υποκειμενικό σε αντικειμενικό και ο καταλύτης σε αυτόν το μετασχηματισμό φαίνεται πως είναι τα Μαθηματικά.

Πηγή: Εργασία των μαθητών της Γ' Γυμνασίου του Μουσικού σχολείου Κομοτηνής, 2005-2006