Μετάφραση του πρώτου Κεφαλαίου του Βιβλίου του Steven Pinker How the Mind Works, Norton Co., 1997, από την Όλγα Μαργαρίτη.
Βασικός Εξοπλισµός.
Γιατί υπάρχουν τόσα πολλά ροµπότ στα µυθιστορήµατα, αλλά κανένα στην πραγµατική ζωή; Θα µπορούσα να πληρώσω πολλά για ένα ροµπότ που θα µπορούσε να µαζεύει τα πιάτα ή να κάνει απλές δουλειές. Όµως δεν θα το κάνω µέσα σ’ αυτόν τον αιώνα και προφανώς ούτε στον επόµενο. Φυσικά, υπάρχουν ροµπότ που συγκολλούν ή βάφουν σε τράπεζες συναρµολογήσεως και τριγυρίζουν στις αίθουσες των εργαστηρίων. Η ερώτησή µου αφορά στις µηχανές που περπατάνε, µιλάνε, βλέπουν και σκέφτονται πολλές φορές καλύτερα απ’ ότι τα αφεντικά τους. Από το 1920, όταν ο Karel Capek εφηύρε τη λέξη ροµπότ στο έργο του «R.U.R.» οι συγγραφείς τα έπλασαν µε τη φαντασία τους: ο Speedy, ο Cutie και ο Dave στο «I, Robot» του Isaac Asimov, ο Robbie στο «Μονοµαχία δύο κόσµων», το δονούµενο κουτί στο «Χαµένοι στο διάστηµα», οι daleks στο «Doctor Who», η Rosie η υπηρέτρια στο «The Jetsons», ο Nomad στο «Star Trek», ο Hymie στο «Get Smart», οι ανέκφραστοι µπάτλερ και οι διαπληκτιζόµενοι µικροέµποροι στον «Υπναρά», ο R2D2 κι ο C3PO στον «Πόλεµο των άστρων», ο Εξολοθρευτής στον «Εξολοθρευτή», ο Υπολοχαγός Data στο «Σταρ Τρεκ: Η επόµενη γενιά» και οι ευφυολόγοι ταινιοκριτικοί στο «Mystery Science Theater 3000».
Αυτό το κεφάλαιο δεν αφορά στα ροµπότ αλλά στην ανθρώπινη νόηση. Θα προσπαθήσω να εξηγήσω τι είναι ο νους, από πού προήλθε και πώς µας επιτρέπει να βλέπουµε, να σκεφτόµαστε, να αισθανόµαστε, να αλληλεπιδρούµε και να επιδιώκουµε υψηλότερες αναζητήσεις όπως η τέχνη, η θρησκεία και η φιλοσοφία. Στην πορεία θα προσπαθήσω να ρίξω φως σε καθαρά ανθρώπινες ιδιαιτερότητες. Γιατί οι αναµνήσεις φθίνουν; Πώς το µακιγιάζ αλλάζει την εµφάνιση ενός προσώπου; Πώς προκύπτουν τα εθνολογικά στερεότυπα και πότε γίνονται παράλογα; Γιατί οι άνθρωποι χάνουν την ψυχραιµία τους; Τι κάνει τα παιδιά να είναι πειραχτήρια; Γιατί οι ανόητοι ερωτεύονται; Τι µας κάνει να γελάµε; Και γιατί οι άνθρωποι πιστεύουν στα φαντάσµατα και στα πνεύµατα;
Όµως το σηµείο εκκίνησης για µένα είναι το χάσµα ανάµεσα στα φανταστικά ροµπότ και στην πραγµατικότητα επειδή υποδεικνύει το πρώτο βήµα που πρέπει να κάνουµε για να γνωρίσουµε τον εαυτό µας, το να εκτιµήσουµε τον τροµερά περίπλοκο σχεδιασµό πίσω από κατορθώµατα νοητικής ζωής τα οποία θεωρούµε δεδοµένα. Ο λόγος για τον οποίο δεν υπάρχουν ανθρωπόµορφα ροµπότ δεν έγκειται στο ότι η βασική ιδέα για έναν µηχανικό του νου βρίσκεται σε λάθος δρόµο αλλά στο ότι τα προβλήµατα µηχανικής που εµείς οι άνθρωποι επιλύουµε όταν βλέπουµε, περπατάµε, σχεδιάζουµε και ακολουθούµε το ηµερήσιό µας πρόγραµµα είναι πολύ πιο γοητευτικά από το να προσγειωθεί κανείς στο φεγγάρι ή να ανακαλύψει τον ανθρώπινο γονότυπο. Η φύση άλλη µια φορά έχει στη διάθεσή της ευφυείς λύσεις τις οποίες οι µηχανικοί δεν µπορούν ακόµα να αναπαραγάγουν. Όταν ο Άµλετ λέει, «Τι αριστούργηµα ο άνθρωπος! Τι ευγενικό το πνεύµα του! Τι απεριόριστη η ικανότητά του! Η µορφή και η κίνησή του, τι έκφραση, τι θαύµα!» δεν θα έπρεπε να µας προκαλεί δέος ο Shakespeare, ο Mozart, ο Einstein ή ο Kareem Abdul-Jabbar, αλλά ένα παιδί τεσσάρων ετών που µας ζητάει να τοποθετήσουµε ένα παιχνίδι σε ένα ράφι.
Σε ένα καλά σχεδιασµένο σύστηµα, τα συστατικά του µέρη δεν είναι τίποτα άλλο παρά µαύρα κουτιά, που λειτουργούν ως δια µαγείας. Κάτι ανάλογο συµβαίνει και µε τον νου. Η ικανότητα µε την οποία συλλογιζόµαστε τον κόσµο, δεν έχει την δυνατότητα να στραφεί µέσα στην ίδια ή σε άλλες για να ελέγξει τι είναι αυτό που την υποκινεί. Αυτό µας καθιστά θύµατα µιας ψευδαίσθησης, νοµίζοντας ότι η ψυχολογία µας προέρχεται από µια θεϊκή δύναµη, από µια µυστηριακή ουσία ή από τον παντοδύναµο θεό. Κατά τη Εβραϊκή παράδοση των Golem, µια φιγούρα από πηλό πήρε σάρκα και οστά χάρη σε µια επιγραφή µε το όνοµα του Θεού. Το αρχέτυπο αυτό αντηχεί σε πολλές ιστορίες µε ροµπότ. Το άγαλµα της Γαλάτειας ζωντάνεψε ως απάντηση της Αφροδίτης στις προσευχές του Πυγµαλίωνα κι ο Πινόκιο ήρθε στη ζωή από τη Γαλάζια Νεράιδα. Οι σύγχρονες εκδοχές του αρχετύπου του Golem εµφανίζονται σε κάποιες λιγότερο φανταστικές ιστορίες της επιστήµης. Όλη η ανθρώπινη ψυχολογία βασίζεται σε µια µοναδική, παντοδύναµη αρχή: έναν µεγάλο εγκέφαλο, κουλτούρα, γλώσσα, κοινωνικοποίηση, µάθηση, περιπλοκότητα, αυτο-οργάνωση, δυναµική των νευρωνικών δικτύων.
Πρέπει να γίνει σαφές ότι ο νους δεν προέρχεται από κάποια θεϊκή ουσία ή µια θαυµατοποιό δύναµη. Ο νους, όπως το διαστηµόπλοιο «Apollo», είναι σχεδιασµένος για να επιλύει πολλά µηχανικά προβλήµατα και γι’ αυτό είναι εφοδιασµένος από συστήµατα υψηλής τεχνολογίας, το καθένα από τα οποία είναι προορισµένο να αντιµετωπίζει τα δικά του εµπόδια. Θα εκθέσω αυτά τα προβλήµατα τα οποία αποτελούν τις σχεδιαστικές αναζητήσεις για την κατασκευή ενός ροµπότ, καθώς και ένα από τα βασικά ζητήµατα της ψυχολογίας. Γι’ αυτό πιστεύω ότι η ανακάλυψη των τεχνικών προκλήσεων που πραγµατοποιήθηκε από τη γνωσιακή επιστήµη και την τεχνητή νοηµοσύνη και ήρθε αντιµέτωπη µε τη γήινη νοητική δραστηριότητα, καθίσταται µια από τις µεγαλύτερες αποκαλύψεις της επιστήµης, µια αφύπνιση της φαντασίας ανάλογη µε τη γνώση ότι το σύµπαν αποτελείται από δισεκατοµµύρια γαλαξίες ή ότι µια σταγόνα λιµνάζοντος νερού σφύζει από ζωή.
Η Πρόκληση της Κατασκευής Ροµπότ
Τι χρειάζεται για να φτιάξουµε ένα ροµπότ; Ας αφήσουµε στην άκρη τις εξαιρετικά δύσκολες ανθρώπινες ικανότητες, όπως είναι ο υπολογισµός της τροχιάς των πλανητών και ας ξεκινήσουµε µε τις απλούστερες, όπως η όραση, το περπάτηµα, το κράτηµα, η σκέψη για αντικείµενα και ανθρώπους και ο σχεδιασµός ενεργειών.
Στις ταινίες συχνά βλέπουµε κάποιες σκηνές µέσα από τα µάτια ενός ροµπότ χάρη στα κινηµατογραφικά τεχνάσµατα όπως η παραµόρφωση της οπτικής γωνίας των 180 µοιρών (fish eye) ή το σταυρόνηµα∗. Αυτό είναι ενδιαφέρον για µας τους θεατές που έχουµε λειτουργικά µάτια και εγκέφαλο, αλλά ανώφελο για το εσωτερικό ενός ροµπότ. Το ροµπότ δεν στεγάζει µέσα του ένα πλήθος από ανθρωπάκια –ανθρωπάρια- που κοιτάζουν την εικόνα και λένε στο ροµπότ τι βλέπουν. Αν µπορούσατε να δείτε µε τα µάτια ενός ροµπότ, το αποτέλεσµα δεν θα έµοιαζε µε σκηνή από ταινία, αλλά µε το εξής:
225 221 216 219 219 214 207 218 219 220 207 155 136 135
213 206 213 223 221 223 216 195 156 141 130 206 217 210
216 224 223 228 230 234 216 207 157 136 132 211 213 221
219 220 176 149 137 132 221 229 218 230 228 214 213 209
198 224 161 140 133 127 220 219 224 220 219 215 206 206
221 159 143 133 131 221 215 211 218 214 220 218 221 212
218 204 148 141 131 130 214 211 211 218 214 220 226 216
223 209 143 141 141 124 211 208 223 213 216 226 231 230
224 199 153 141 136 125 200 224 219 215 217 224 232 241
199 153 141 141 124 211 208 223 213 216 231 230 241 199
153 141 136 125 200 224 219 215 217 224 232 241 240 211
150 139 128 132 204 206 208 205 233 241 252 242 192 151
141 133 130 200 205 201 216 232 248 255 246 231 210 149
141 132 126 191 194 209 238 245 255 249 235 238 197 146
139 130 132 189 199 200 227 239 237 235 236 247 192 145
142 124 133 198 196 209 211 210 215 236 240 232 177 142
137 135 124 198 203 205 208 211 224 225 240 210 160 139
132 129 130 216 209 214 220 210 231 245 219 169 143 148
129 128 139 211 210 217 218 214 227 244 221 162 140 139
129 133 131 215 210 216 209 220 248 200 156 141 127 130
124 142 229 224 212 214 220 229 234 208 151 145 128 131
129 255 235 230 249 253 240 228 193 147 139 132 128 136
125 250 245 238 245 246 235 235 190 139 136 134 135 126
130 240 238 233 232 235 255 246 168 156 144 129 127 136
∗ τεχνική που αναπαράγει την οπτική που δηµιουργούν τα pixel.
Κάθε αριθµός αντιπροσωπεύει τη φωτεινότητα µιας από τις εκατοµµύρια κουκίδες, από τις οποίες αποτελείται το οπτικό πεδίο. Τα µικρότερα νούµερα αντιστοιχούν στις σκουρότερες κουκίδες, ενώ τα µεγαλύτερα στις πιο φωτεινές. Τα νούµερα είναι τα πραγµατικά σήµατα, που προέρχονται από µια ηλεκτρονική κάµερα, καθώς εστιάζει πάνω σε ένα ανθρώπινο χέρι, παρ’ όλο που θα µπορούσαν να είναι τα σήµατα από την ενεργοποίηση κάποιων νευρικών ινών που µεταφέρονται από το µάτι προς τον εγκέφαλο καθώς ένας άνθρωπος κοιτάζει ένα χέρι. Για τον εγκέφαλο ενός ροµπότ–ή ενός ανθρώπου-προκειµένου να αναγνωρίζει τα αντικείµενα και να µην σκοντάφτει πάνω τους, πρέπει να ξεπεράσει τους αριθµούς και να µαντέψει ποιο είδος αντικειµένου προκάλεσε την αντανάκλαση του φωτός και δηµιούργησε αυτούς τους αριθµούς. Το πρόβληµα είναι αρκετά δύσκολο.
Αρχικά, το οπτικό σύστηµα πρέπει να εντοπίσει που τελειώνει το αντικείµενο και που αρχίζει το φόντο. Αλλά, ο κόσµος και τα αντικείµενα από τα οποία αποτελείται δεν είναι ένα χρωµατιστό βιβλίο µε µαύρα περιγράµµατα γύρω από µεµονωµένες περιοχές. Ο κόσµος, όπως προβάλλεται στα µάτια µας, είναι ένα ‘µωσαϊκό’ από µικρές κουκίδες διαφόρων αποχρώσεων. Ίσως κάποιος θα µπορούσε να µαντέψει ότι το οπτικό κέντρο του εγκεφάλου ψάχνει για συγκεκριµένες περιοχές, όπου ένα σύνολο µεγάλων αριθµών (φωτεινότερη περιοχή) συνδέεται µε ένα σύνολο µικρών αριθµών (σκουρότερη περιοχή). Κάτι τέτοιο µπορούµε να διακρίνουµε και στον πίνακα µε τους αριθµούς. Μια νοητή γραµµή τον διατρέχει από πάνω δεξιά προς το κέντρο χαµηλά. ∆υστυχώς, τις περισσότερες φορές δεν έχουµε την δυνατότητα να διακρίνουµε τις άκρες ενός αντικειµένου, όταν αυτό καταλαµβάνει έναν άδειο χώρο. Η αντιπαράθεση µεγάλων και µικρών αριθµών µπορεί να οφείλεται σε πολλές διαφορετικές διατάξεις της ύλης. Αυτό το σχέδιο που επινόησαν οι ψυχολόγοι Pawan Sinha και Edward Adelson παρουσιάζει ένα πλαίσιο από ανοιχτόχρωµα και σκουρόχρωµα γκρι πλακάκια.
Στην πραγµατικότητα είναι ένα ορθογώνιο περίγραµµα σε µια µαύρη επιφάνεια κι εσείς βλέπετε ένα µέρος της κατασκευής. Στην επόµενη εικόνα η επιφάνεια έχει αφαιρεθεί και µπορείτε να δείτε ότι κάθε ζευγάρι εφαπτόµενων γκρι τετραγώνων προέρχεται από µια διαφορετική διάταξη των αντικειµένων.
Μεγάλοι αριθµοί δίπλα σε µικρούς µπορεί να σηµαίνουν ότι ένα αντικείµενο στέκεται µπροστά από ένα άλλο, ότι ένα σκούρο χαρτί βρίσκεται πάνω σε ένα λευκό, ότι µια επιφάνεια είναι βαµµένη µε δύο αποχρώσεις του γκρι, ότι δύο αντικείµενα εφάπτονται. Επίσης µπορεί να αναπαριστούν ένα γκρι σελοφάν πάνω σε µια λευκή σελίδα, το εσωτερικό ή το εξωτερικό µιας γωνίας, όταν συναντώνται δύο τοίχοι, ή µία σκιά. Ο εγκέφαλος πρέπει να λύσει µε κάποιο τρόπο το πρόβληµα της αναγνώρισης τρισδιάστατων αντικειµένων µέσω των κόκκων που προβάλλονται στον αµφιβληστροειδή καθώς και το πρόβληµα του προσδιορισµού του είδους του κάθε κόκκου (σκιά ή χρώµα, πτυχή ή επιφάνεια, διαυγές ή θαµπό) µέσω της γνώσης του αντικειµένου στο οποίο αυτός ανήκει.
Οι πραγµατικές δυσκολίες δεν έχουν αντιµετωπιστεί ακόµα. Αφού κατατάξουµε τον οπτικό κόσµο σε αντικείµενα, καλούµαστε να µάθουµε από ποιο υλικό είναι κατασκευασµένα, για παράδειγµα θα πρέπει να είµαστε σε θέση να ξεχωρίζουµε το χιόνι από το κάρβουνο. Με µια πρώτη µατιά το πρόβληµα φαίνεται απλό. Αν οι µεγάλοι αριθµοί προέρχονται από φωτεινές περιοχές και οι µικρότεροι από σκοτεινές, τότε ο µεγάλος αριθµός ισοδυναµεί µε το λευκό, άρα µε το χιόνι και ο µικρός µε το µαύρο και κατ’ επέκταση µε το κάρβουνο. Σωστό; Λάθος. Η ποσότητα φωτός που αντανακλάται σε ένα σηµείο του αµφιβληστροειδούς δεν εξαρτάται µόνο από το πόσο ανοιχτόχρωµο ή σκουρόχρωµο είναι το αντικείµενο, αλλά και από το πόσο λαµπερό ή µουντό είναι το φως, που πέφτει πάνω σε αυτό. Ένας µετρητής φωτός, όπως αυτοί που χρησιµοποιούν οι φωτογράφοι, θα έδειχνε ότι περισσότερο φως αντανακλάται από το εξωτερικό περίβληµα ενός κοµµατιού από κάρβουνο, παρά από το εσωτερικό µέρος µιας µπάλας χιονιού. Γι’ αυτό οι άνθρωποι απογοητεύονται τόσο συχνά από τις φωτογραφίες τους και γι’ αυτό η φωτογραφία είναι µια τόσο σύνθετη τέχνη. Η κάµερα δεν ψεύδεται. Αν δεν επέµβουµε, αποτυπώνει τις εξωτερικές λήψεις σαν γάλα και τις εσωτερικές σαν λάσπη. Οι φωτογράφοι, και µερικές φορές τα µικροτσίπ µέσα στην κάµερα, αποδίδουν µια ρεαλιστική εικόνα µε τεχνάσµατα όπως ο ρυθµιζόµενος χρονοδιακόπτης, το άνοιγµα του φακού, οι ταχύτητες, τα φλας κι οι χειρισµοί κατά την εµφάνιση.
Το οπτικό µας σύστηµα επιτυγχάνει πολύ περισσότερα. Με κάποιο τρόπο µας επιτρέπει να αναγνωρίζουµε το λαµπερό εξωτερικό χρώµα του κάρβουνου ως µαύρο και το µουντό εσωτερικό χρώµα του χιονιού ως άσπρο. Αυτό είναι ένα θετικό αποτέλεσµα, γιατί η συνειδητή µας γνώση για το χρώµα και τη φωτεινότητα ταιριάζει περισσότερο µε την εικόνα του κόσµου, όπως είναι στην πραγµατικότητα και λιγότερο µε το πώς παρουσιάζεται στα µάτια µας. Η χιονόµπαλα είναι µαλακή και υγρή και έτοιµη να λιώσει είτε βρίσκεται σε εσωτερικό είτε σε εξωτερικό χώρο. Επίσης τη βλέπουµε λευκή είτε βρίσκεται σε εσωτερικό είτε σε εξωτερικό χώρο. Το κάρβουνο είναι πάντα σκληρό και βρόµικο, συνήθως καίει και πάντα το βλέπουµε µαύρο. Η αρµονία ανάµεσα στο πώς φαίνεται ο κόσµος και στο πώς είναι στην πραγµατικότητα, πρέπει να αποτελεί επίτευγµα µιας νευρωνικής µαγείας, γιατί το µαύρο και το άσπρο δεν αυτοπαρουσιάζονται απλώς στον αµφιβληστροειδή. Σε περίπτωση που είστε ακόµα δύσπιστοι, ορίστε ένα καθηµερινό παράδειγµα. Όταν η τηλεόραση είναι κλειστή, η οθόνη έχει ένα απαλό πρασινωπό γκρι χρώµα. Όταν είναι ανοιχτή, µερικές κουκίδες φωσφόρου εκπέµπουν φως δίνοντας χρώµα στις φωτεινές περιοχές της εικόνας. Στις σκοτεινές περιοχές οι κουκίδες δεν απορροφούν φως και χρώµα και παραµένουν γκρίζες. Οι µαύρες περιοχές που βλέπετε στην πραγµατικότητα έχουν την απαλή απόχρωση που έχει κι η οθόνη όταν είναι κλειστή. Το µαύρο χρώµα βρίσκεται στη φαντασία µας, είναι ένα προϊόν του εγκεφαλικού κυκλώµατος που µας επιτρέπει να βλέπουµε το κάρβουνο σαν κάρβουνο. Οι κατασκευαστές τηλεοράσεων εκµεταλλεύτηκαν αυτήν την ιδέα του κυκλώµατος όταν σχεδίαζαν την οθόνη.
Το επόµενο πρόβληµα είναι η οπτική αντίληψη του βάθους. Τα µάτια µας έχουν τη δυνατότητα να µεταφράζουν τον τρισδιάστατο κόσµο µας σε ένα ζευγάρι δισδιάστατων εικόνων του αµφιβληστροειδούς, ενώ η τρίτη διάσταση αναδιαµορφώνεται από τον εγκέφαλο. Όµως οι κουκίδες στον αµφιβληστροειδή δεν δίνουν καµιά πληροφορία που να φανερώνει πόσο µακριά είναι µια επιφάνεια. Ένα γραµµατόσηµο πάνω στην παλάµη σας µπορεί να δηµιουργήσει τον ίδιο πίνακα αριθµών στον αµφιβληστροειδή σας, όπως ακριβώς και µια καρέκλα στην άλλη άκρη του δωµατίου ή ένα κτίριο εκατοντάδες µέτρα µακριά (Εικόνα 3α).
Μια κοµµένη σανίδα που γίνεται ορατή µετωπικά µπορεί να προβάλλει το ίδιο τραπέζιο σχήµα που προβάλλουν και διάφορες ανισόπλευρες επιφάνειες όταν τους δίνεται κάποια κλίση (Εικόνα 3β).
Μπορείτε να καταλάβετε την ισχύ αυτού του γεωµετρικού δεδοµένου και του νευρωνικού µηχανισµού που το επιβεβαιώνει, κοιτάζοντας έντονα για µερικά δευτερόλεπτα µια λάµπα ή µια φωτογραφική µηχανή όταν ανάβει το φλας. Έτσι αποχρωµατίζεται ένα τµήµα του αµφιβληστροειδούς σας. Αν τώρα κοιτάξετε τη σελίδα που βρίσκεται µπροστά σας, σχηµατίζεται µια δεύτερη εικόνα της που φαίνεται να είναι µερικά εκατοστά µακρύτερα. Αν κοιτάξετε τον τοίχο, η µετα-εικόνα τον δείχνει αρκετά µακρύτερο κι αν κοιτάξετε τον ουρανό έχει το µέγεθος ενός σύννεφου.
Τελικά, πώς µπορεί ένας οπτικός αυτόνοµος υποµηχανισµός να αναγνωρίζει τα αντικείµενα που απαρτίζουν τον κόσµο, ώστε να δηµιουργήσουµε ένα ροµπότ που να τα ονοµάζει ή να ανακαλεί τη χρήση τους; Μια προφανής λύση είναι να κατασκευάσουµε ένα πρότυπο ή ένα περίγραµµα που να αντιγράφει το σχήµα κάθε αντικειµένου. Όταν παρουσιάζεται ένα αντικείµενο, η προβολή του στον αµφιβληστροειδή θα ταιριάζει στο πρότυπό του, όπως µια στρογγυλή βίδα σε µια στρογγυλή τρύπα. Το πρότυπο θα πάρει το όνοµα του εκάστοτε σχήµατος – στην συγκεκριµένη περίπτωση, «το γράµµα P» - και κάθε φορά που το αντικείµενο θα ταιριάζει µε το πρότυπο, µέσω του δεύτερου θα προκύπτει και το όνοµα του αντικειµένου.
Μπορεί να αναγνωρίσει το Ρ ακόµα κι όταν δεν υπάρχει. Για παράδειγµα δίνει µια ψεύτικη επιβεβαίωση για το γράµµα R, όπως φαίνεται στο πρώτο τετράγωνο στην εικόνα, που ακολουθεί (Εικόνα 4β). Αποτυγχάνει επίσης να αναγνωρίσει το P όταν για παράδειγµα παρουσιάζεται µετατοπισµένο, αντεστραµµένο, πολύ µακριά, πολύ κοντά ή διαφορετικά γραµµένο.
Και βέβαια αυτά τα προβλήµατα προκύπτουν µε ένα απλό γράµµα του αλφαβήτου. Φανταστείτε να προσπαθήσουµε να σχεδιάσουµε έναν µηχανισµό αναγνώρισης µιας µπλούζας ή ενός προσώπου! Για να είµαστε ειλικρινείς, ύστερα από τέσσερις δεκαετίες έρευνας στην τεχνητή νοηµοσύνη, η τεχνολογία που αφορά στην αναγνώριση σχηµάτων έχει βελτιωθεί κατά πολύ. Μπορεί να διαθέτετε ένα πρόγραµµα που έχει τη δυνατότητα να «σαρώσει» µια σελίδα, να αναγνωρίσει την εκτύπωση και να τη µετατρέψει µε λογική ακρίβεια σε ένα αρχείο. Ακόµα όµως οι τεχνητοί µηχανισµοί αναγνώρισης δεν συναγωνίζονται τους ανθρώπινους. Οι τεχνητοί είναι σχεδιασµένοι για απλές, εύκολα αναγνωρίσιµες λέξεις κι όχι για τον περίπλοκο πραγµατικό κόσµο. Οι παράξενοι αριθµοί στο κάτω µέρος των επιταγών είναι προσεκτικά σχεδιασµένοι ώστε το σχήµα τους να µην συγχέεται µε άλλα και τυπώνονται από ειδική συσκευή που τα τοποθετεί σε τέτοια προκαθορισµένη θέση ώστε να αναγνωρίζονται από τα πρότυπά τους. Όταν εγκατασταθούν στα κτίρια οι πρώτοι ανιχνευτές προσώπου µε σκοπό να αντικαταστήσουν τους θυρωρούς, δεν θα προσπαθήσουν καν να αποδώσουν το κιαροσκούρο του προσώπου σας, αλλά θα «σαρώσουν» τις άκρες και τις βασικές γραµµές της ίριδας ή τα αιµοφόρα αγγεία του αµφιβληστροειδούς σας. Αντίθετα, ο εγκέφαλός µας κρατάει αρχείο για το σχήµα κάθε προσώπου που γνωρίζουµε (κάθε γράµµατος, ζώου, εργαλείου) και το αρχείο συνδυάζεται µε την εικόνα που προβάλλεται στον αµφιβληστροειδή ακόµα κι όταν αυτή παραµορφώνεται µε όλους τους πιθανούς τρόπους.